Study on the Spatial and Temporal Characteristics of Mesoscale Drought in China under Future Climate Change Scenarios

Author:

Gong Xinglong,Du ShupingORCID,Li FengyuORCID,Ding Yibo

Abstract

In this study, precipitation, and temperature data from HadGEM2-ES under Representative Concentration Pathways (RCPs) 4.5 and 8.5 were used to evaluate drought in China in the 21st century. The K-means clustering algorithm was used to analyze the regional characteristics of the dry hazard index (DHI) in China, and the impact of climate change on the variation trend and periodicity of regional drought in China was explored. The results show that the temperature and potential evapotranspiration (PET) of all clusters have an increasing trend under the two RCPs, and the precipitation of most clusters shows a significantly increasing trend. The drought index calculated by the standardized precipitation-evapotranspiration index (SPEI) is higher than those calculated by the standardized precipitation index (SPI) and standardized effective precipitation evapotranspiration index (SP*ETI). The variation trends of drought intensity and frequency in China are not significant in the 21st century; however, the local variation trends are significant. The droughts in most parts of the Xinjiang Province, northern Tibet and western Qinghai Province show significantly increasing trends. According to the DHI analyses and the variations in the drought area ratio, with increases in greenhouse gas concentrations, the droughts in central and western China will become more severe, and drought will spread to the eastern areas of China. In the case that both precipitation and temperature may increase in the future, the increase in evapotranspiration caused by temperature rise will greatly affect drought dynamics. The main drought periodicity in China in the 21st century is 1~3.6 years. Drought is affected by climate change but not significantly.

Funder

Natural Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3