The Use of Image Analysis to Detect Seed Contamination—A Case Study of Triticale

Author:

Gierz ŁukaszORCID,Przybył KrzysztofORCID,Koszela KrzysztofORCID,Duda AdaminaORCID,Ostrowicz Witold

Abstract

Samples of triticale seeds of various qualities were assessed in the study. The seeds were obtained during experiments, reflecting the actual sowing conditions. The experiments were conducted on an original test facility designed by the authors of this study. The speed of the air (15, 20, 25 m/s) transporting seeds in the pneumatic conduit was adjusted to sowing. The resulting graphic database enabled the distinction of six classes of seeds according to their quality and sowing speed. The database was prepared to build training, validation and test sets. The neural model generation process was based on multi-layer perceptron networks (MLPN) and statistical (machine training). When the MLPN was used to identify contaminants in seeds sown at a speed of 15 m/s, the lowest RMS error of 0.052 was noted, whereas the classification correctness coefficient amounted to 0.99.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference65 articles.

1. Conservation agriculture for sustainable and resilient agriculture: Global status, prospects and challenges;Jat,2013

2. Rainfed Farming Systems,2011

3. Air seeding–the North American situation;Memory,1990

4. Design and operation of a measuring system for the evaluation of dynamic reactions of seeds during their impact;Bogota;Motrol Automot. Agric. Energy,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3