Exploring water-absorbing capacity: a digital image analysis of seeds from 120 wheat varieties

Author:

Khan Tooba,Jamil Muhammad,Ali Aamir,Rasheed Sana,Irshad Asma,Maqsood Muhammad Faisal,Zulfiqar Usman,Chaudhary Talha,Ali M. Ajmal,Elshikh Mohamed S.

Abstract

AbstractWheat is a staple food crop that provides a significant portion of the world's daily caloric intake, serving as a vital source of carbohydrates and dietary fiber for billions of people. Seed shape studies of wheat typically involve the use of digital image analysis software to quantify various seed shape parameters such as length, width, area, aspect ratio, roundness, and symmetry. This study presents a comprehensive investigation into the water-absorbing capacity of seeds from 120 distinct wheat lines, leveraging digital image analysis techniques facilitated by SmartGrain software. Water absorption is a pivotal process in the early stages of seed germination, directly influencing plant growth and crop yield. SmartGrain, a powerful image analysis tool, was employed to extract precise quantitative data from digital images of wheat seeds, enabling the assessment of various seed traits in relation to their water-absorbing capacity. The analysis revealed significant transformations in seed characteristics as they absorbed water, including changes in size, weight, shape, and more. Through statistical analysis and correlation assessments, we identified robust relationships between these seed traits, both before and after water treatment. Principal Component Analysis (PCA) and Agglomerative Hierarchical Clustering (AHC) were employed to categorize genotypes with similar trait patterns, providing insights valuable for crop breeding and genetic research. Multiple linear regression analysis further elucidated the influence of specific seed traits, such as weight, width, and distance, on water-absorbing capacity. Our study contributes to a deeper understanding of seed development, imbibition, and the crucial role of water absorption in wheat. These insights have practical implications in agriculture, offering opportunities to optimize breeding programs for improved water absorption in wheat genotypes. The integration of SmartGrain software with advanced statistical methods enhances the reliability and significance of our findings, paving the way for more efficient and resilient wheat crop production. Significant changes in wheat seed shape parameters were observed after imbibition, with notable increases in area, perimeter, length, width, and weight. The length-to-width ratio (LWR) and circularity displayed opposite trends, with higher values before imbibition and lower values after imbibition.

Funder

Hungarian University of Agriculture and Life Sciences

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties;Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi;2024-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3