CNN Feature-Based Image Copy Detection with Contextual Hash Embedding

Author:

Zhou Zhili,Wang Meimin,Cao Yi,Su Yuecheng

Abstract

As one of the important techniques for protecting the copyrights of digital images, content-based image copy detection has attracted a lot of attention in the past few decades. The traditional content-based copy detection methods usually extract local hand-crafted features and then quantize these features to visual words by the bag-of-visual-words (BOW) model to build an inverted index file for rapid image matching. Recently, deep learning features, such as the features derived from convolutional neural networks (CNN), have been proven to outperform the hand-crafted features in many applications of computer vision. However, it is not feasible to directly apply the existing global CNN features for copy detection, since they are usually sensitive to partial content-discarded attacks, such as copping and occlusion. Thus, we propose a local CNN feature-based image copy detection method with contextual hash embedding. We first extract the local CNN features from images and then quantize them to visual words to construct an index file. Then, as the BOW quantization process decreases the discriminability of these features to some extent, a contextual hash sequence is captured from a relatively large region surrounding each CNN feature and then is embedded into the index file to improve the feature’s discriminability. Extensive experimental results demonstrate that the proposed method achieves a superior performance compared to the related works in the copy detection task.

Funder

National Natural Science Foundation of China

MOST

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3