An Artificial Visual System for Three Dimensional Motion Direction Detection

Author:

Han Mianzhe,Todo YukiORCID,Tang Zheng

Abstract

For mammals, enormous amounts of visual information are processed by neurons of the visual nervous system. The research of the direction selectivity is of great significance and local direction-selective ganglion neurons have been discovered. However, research is still at the one dimensional level and concentrated on a single cell. It remains challenging to explain the function and mechanism of the overall motion direction detection. In our previous papers, we have proposed a motion direction detection mechanism on the two dimensional level to solve these problems. The previous studies did not take into account that the information in the left and right retina is different and cannot be used to detect the three dimensional motion direction. Further effort is required to develop a more realistic system in three dimensions. In this paper, we propose a new three-dimensional artificial visual system to extend motion direction detection mechanism into three dimensions. We assumed that a neuron could detect the local motion of a single voxel object within three dimensional space. We also took into consideration that the information of the left and right retinas is different. Based on this binocular disparity, a realistic motion direction mechanism for three dimensions was established: the neurons received signals from the primary visual cortex of each eye and responded to motion in specific directions. There are a series of local direction-selective ganglion neurons arrayed on the retina by a logical AND operation. The response of each local direction detection neuron will be further integrated by the next neural layer to obtain the global motion direction. We carry out several computer simulations to demonstrate the validity of the mechanism. It shows that the proposed mechanism is capable of detecting the motion of complex three dimensional objects, which is consistent with most known physiological experimental results.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3