Improved Filtering of ICESat-2 Lidar Data for Nearshore Bathymetry Estimation Using Sentinel-2 Imagery

Author:

Xie Congshuang,Chen PengORCID,Pan Delu,Zhong Chunyi,Zhang ZhenhuaORCID

Abstract

The accurate estimation of nearshore bathymetry is necessary for multiple aspects of coastal research and practices. The traditional shipborne single-beam/multi-beam echo sounders and Airborne Lidar bathymetry (ALB) have a high cost, are inefficient, and have sparse coverage. The Satellite-derived bathymetry (SDB) method has been proven to be a promising tool in obtaining bathymetric data in shallow water. However, current empirical SDB methods for multispectral imagery data usually rely on in situ depths as control points, severely limiting their spatial application. This study proposed a satellite-derived bathymetry method without requiring a priori in situ data by merging active and passive remote sensing (SDB-AP). It realizes rapid bathymetric mapping with only satellite remotely sensed data, which greatly extends the spatial coverage and temporal scale. First, seafloor photons were detected from the ICESat-2 raw photons based on an improved adaptive Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, which could calculate the optimal detection parameters for seafloor photons by adaptive iteration. Then, the bathymetry of the detected seafloor photons was corrected because of the refraction that occurs at the air–water interface. Afterward, the outlier photons were removed by an outlier-removal algorithm to improve the retrieval accuracy. Subsequently, the high spatial resolution (0.7 m) ICESat-2 derived bathymetry data were gridded to match the Sentinel-2 data with a lower spatial resolution (10 m). All of the ICESate-2 gridded data were randomly separated into two parts: 80% were employed to train the empirical bathymetric model, and the remaining 20% were used to quantify the inversion accuracy. Finally, after merging the ICESat-2 data and Sentinel-2 multispectral images, the bathymetric maps over St. Thomas of the United States Virgin Islands, Acklins Island in the Bahamas, and Huaguang Reef in the South China Sea were produced. The ICESat-2-derived results were compared against in situ data over the St. Thomas area. The results showed that the estimated bathymetry reached excellent inversion accuracy and the corresponding RMSE was 0.68 m. In addition, the RMSEs between the SDB-AP estimated depths and the ICESat-2 bathymetry results of St. Thomas, Acklins Island, and Huaguang Reef were 0.96 m, 0.91 m, and 0.94 m, respectively. Overall, the above results indicate that the SDB-AP method is effective and feasible for different shallow water regions. It has great potential for large-scale and long-term nearshore bathymetry in the future.

Funder

Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory

Zhejiang Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3