Identify the Micro-Parameters for Optimized Discrete Element Models of Granular Materials in Two Dimensions Using Hexagonal Close-Packed Structures

Author:

Zhou Xiaodong12,Jin Dongzhao2ORCID,Ge Dongdong23ORCID,Chen Siyu24ORCID,You Zhanping2ORCID

Affiliation:

1. Rizhao City Transportation Bureau, Rizhao 276800, China

2. Department of Civil, Environmental, and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931-1295, USA

3. National Engineering Research Center of Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China

4. School of Transportation, Southeast University, Nanjing 211189, China

Abstract

The widely used simple cubic-centered (SCC) model structure has limitations in handling diagonal loading and accurately representing Poisson’s ratio. Therefore, the objective of this study is to develop a set of modeling procedures for granular material discrete element models (DEM) with high efficiency, low cost, reliable accuracy, and wide application. The new modeling procedures use coarse aggregate templates from an aggregate database to improve simulation accuracy and use geometry information from the random generation method to create virtual specimens. The hexagonal close-packed (HCP) structure, which has advantages in simulating shear failure and Poisson’s ratio, was employed instead of the SCC structure. The corresponding mechanical calculation for contact micro-parameters was then derived and verified through simple stiffness/bond tests and complete indirect tensile (IDT) tests of a set of asphalt mixture specimens. The results showed that (1) a new set of modeling procedures using the hexagonal close-packed (HCP) structure was proposed and was proved to be effective, (2) micro-parameters of the DEM models were transit form material macro-parameters based on a set of equations that were derived based on basic configuration and mechanism of discrete element theories, and (3) that the results from IDT tests prove that the new approach to determining model micro-parameters based on mechanical calculation is reliable. This new approach may enable a wider and deeper application of the HCP structure DEM models in the research of granular material.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3