Parallel Computation of Multi-GNSS and Multi-Frequency Inter-Frequency Clock Biases and Observable-Specific Biases

Author:

Li Linyang12ORCID,Yang Zhen2,Jia Zhen2,Li Xin3ORCID

Affiliation:

1. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

2. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China

3. College of Computer and Information, Hohai University, Nanjing 211100, China

Abstract

With the widespread application of GNSS, the delicate handling of biases among different systems and different frequencies is of critical importance, wherein the inter-frequency clock biases (IFCBs) and observable-specific signal biases (OSBs) should be carefully corrected. Usually, a serial approach is used to calculate these products. To accelerate the computation speed and reduce the time delay, a multicore parallel estimation strategy for IFCBs, code, and phase OSBs by utilizing task parallel library (TPL) is proposed, the parallel computations, including precise point positioning (PPP), IFCBs, and OSBs estimation, being carried out on the basis of data parallelisms and task-based asynchronous programming. Three weeks of observables from the multi-GNSS experiment campaign (MGEX) network is utilized. The result shows that the IFCB errors of GPS Block IIF and GLONASS M+ satellites are nonnegligible, in which the GLONASS M+ satellite R21 shows the largest IFCB of more than 0.60 m, while those of other systems and frequencies are marginal, and the code OSBs present excellent stability with a standard deviation (STD) of 0.10 ns for GPS and approximately 0.20 ns for other satellite systems. Besides, the phase OSBs of all systems show the stability of better than 0.10 ns, wherein the Galileo satellites show the best performance of 0.01 ns. Compared with the single-core serial computing method, the acceleration rates for IFCBs and OSBs estimation are 3.10, 5.53, 9.66, and 17.04 times higher using four, eight, sixteen, and thirty-two physical cores, respectively, through multi-core parallelized execution.

Funder

National Natural Science Foundation of China

Excellent Post-Doctoral Program of Jiangsu Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3