Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China

Author:

Chen Xueping12,Zhao Xueyong12,Zhao Yanming3,Wang Ruixiong12,Lu Jiannan12,Zhuang Haiyan4,Bai Liya5

Affiliation:

1. Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Tongliao Water Authority, Tongliao 028000, China

4. Naiman Water Authority, Tongliao 028300, China

5. Chifeng Hongshan Reservoir Management Center, Chifeng 024000, China

Abstract

Surface water dynamics are sensitive to climate change and anthropogenic activity, and they exert important feedback to the above two processes. However, it is unclear how climate and human activity affect surface water variation, especially in semi-arid regions, such as Horqin Sandy Land (HQSL), a typical part of the fragile region for intensive interaction of climate and land use change in northern China. We investigated the changes of spatiotemporal distribution and the influence of climatic and anthropogenic factors on Surface Water Area (SWA) in HQSL. There are 5933 Landsat images used in this research, which were processed on the Google Earth Engine cloud platform to extract water bodies by vegetation index and water index method. The results revealed that the area and number of water bodies showed a significant decrease in HQSL from 1985 to 2020. Spatially, the SWA experienced different amplitudes of variation in the Animal Husbandry Dominated Region (AHDR) and in the Agriculture Dominated Region (ADR) during two periods; many water bodies even dried up and disappeared in HQSL. Hierarchical partitioning analysis showed that the SWA of both regions was primarily influenced by climatic factors during the pre-change period (1985–2000; the mutation occurred in 2000), and human activity has become more and more significantly important during the post-change period (2001–2020). Thus, it is predictable that SWA variation in the following decades will be influenced by the interaction of climate change and human activity, even more by the later in HQSL, and the social sectors have to improve their ability to adapt to climate change by modifying land use strategy and techniques toward the sustainable development of water resources.

Funder

Natural Science Foundation of China

Transformation Program of Scientific and Technological Achievements of Inner Mongolia Autonomous Region

National Project on Science and Technology Basic Resources Survey of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3