Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture

Author:

Daum RubenORCID,Visser Dmitri,Wild ConstanzeORCID,Kutuzova Larysa,Schneider Maria,Lorenz Günter,Weiss MartinORCID,Hinderer Svenja,Stock Ulrich A.,Seifert MartinaORCID,Schenke-Layland KatjaORCID

Abstract

Appropriate mechanical properties and fast endothelialization of synthetic grafts are key to ensure long-term functionality of implants. We used a newly developed biostable polyurethane elastomer (TPCU) to engineer electrospun vascular scaffolds with promising mechanical properties (E-modulus: 4.8 ± 0.6 MPa, burst pressure: 3326 ± 78 mmHg), which were biofunctionalized with fibronectin (FN) and decorin (DCN). Neither uncoated nor biofunctionalized TPCU scaffolds induced major adverse immune responses except for minor signs of polymorph nuclear cell activation. The in vivo endothelial progenitor cell homing potential of the biofunctionalized scaffolds was simulated in vitro by attracting endothelial colony-forming cells (ECFCs). Although DCN coating did attract ECFCs in combination with FN (FN + DCN), DCN-coated TPCU scaffolds showed a cell-repellent effect in the absence of FN. In a tissue-engineering approach, the electrospun and biofunctionalized tubular grafts were cultured with primary-isolated vascular endothelial cells in a custom-made bioreactor under dynamic conditions with the aim to engineer an advanced therapy medicinal product. Both FN and FN + DCN functionalization supported the formation of a confluent and functional endothelial layer.

Publisher

MDPI AG

Subject

General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive study of plasma polymerization parameters on thiol-coated LDPE films for effective fibronectin adsorption targeting biomedical applications;Progress in Organic Coatings;2024-11

2. Structural design and mechanical analysis of small-caliber bilayer vascular prostheses;International Journal of Polymeric Materials and Polymeric Biomaterials;2024-03-19

3. Antioxidant and Trilayered Electrospun Small-Diameter Vascular Grafts Maintain Patency and Promote Endothelialisation in Rat Femoral Artery;ACS Biomaterials Science & Engineering;2024-02-06

4. Scaffolds in Vascular Tissue Engineering Research;Functional Bio-based Materials for Regenerative Medicine: From Bench to Bedside (Part 2);2024-01-29

5. Effect of VEGF/GREDVY Modified Surface on Vascular Cells Behavior;Journal of Wuhan University of Technology-Mater. Sci. Ed.;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3