Sequential i-GONAD: An Improved In Vivo Technique for CRISPR/Cas9-Based Genetic Manipulations in Mice

Author:

Sato MasahiroORCID,Miyagasako Rico,Takabayashi Shuji,Ohtsuka MasatoORCID,Hatada Izuho,Horii Takuro

Abstract

Improved genome-editing via oviductal nucleic acid delivery (i-GONAD) is a technique capable of inducing genomic changes in preimplantation embryos (zygotes) present within the oviduct of a pregnant female. i-GONAD involves intraoviductal injection of a solution containing genome-editing components via a glass micropipette under a dissecting microscope, followed by in vivo electroporation using tweezer-type electrodes. i-GONAD does not involve ex vivo handling of embryos (isolation of zygotes, microinjection or electroporation of zygotes, and egg transfer of the treated embryos to the oviducts of a recipient female), which is required for in vitro genome-editing of zygotes. i-GONAD enables the generation of indels, knock-in (KI) of ~ 1 kb sequence of interest, and large deletion at a target locus. i-GONAD is usually performed on Day 0.7 of pregnancy, which corresponds to the late zygote stage. During the initial development of this technique, we performed i-GONAD on Days 1.4–1.5 (corresponding to the 2-cell stage). Theoretically, this means that at least two GONAD steps (on Day 0.7 and Day 1.4–1.5) must be performed. If this is practically demonstrated, it provides additional options for various clustered regularly interspaced palindrome repeats (CRISPR)/Caspase 9 (Cas9)-based genetic manipulations. For example, it is usually difficult to induce two independent indels at the target sites, which are located very close to each other, by simultaneous transfection of two guide RNAs and Cas9 protein. However, the sequential induction of indels at a target site may be possible when repeated i-GONAD is performed on different days. Furthermore, simultaneous introduction of two mutated lox sites (to which Cre recombinase bind) for making a floxed allele is reported to be difficult, as it often causes deletion of a sequence between the two gRNA target sites. However, differential KI of lox sites may be possible when repeated i-GONAD is performed on different days. In this study, we performed proof-of-principle experiments to demonstrate the feasibility of the proposed approach called “sequential i-GONAD (si-GONAD).”

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3