Fine Root Production and Soil Available Nutrients in Rubber Monoculture versus Rubber–Flemingia macrophylla Agroforestry

Author:

Bibi Farkhanda,Tomlinson Kyle W.ORCID,Liu ChenggangORCID,Liu Chang’anORCID,Jin YanqiangORCID,Tang JianweiORCID

Abstract

In the present study, we examined fine root production and soil available nutrients (N, P and K) across different soil depths in rubber monoculture and rubber–Flemingia macrophylla agroforestry of different stand ages. We used the ingrowth cores method and sampled 360 soil cores over four growth intervals, representing one year of growth for the present study. The results showed that root production and macronutrient concentrations generally decreased with increasing soil depth. Total fine root production was comparatively high in the youngest stand age (12 years) rubber monoculture; a similar trend was observed for the soil available P and K, but available N was greater in older than younger stand ages. Root growth and soil available P and K were all lower in the agroforestry system than the monoculture. Significant differences in fine root production with stand ages, management system and seasons suggest that fine root responses to the soil available nutrients are vital to understanding the precise response of above- and belowground biomass to environmental changes.

Funder

Key Program of CAS (KFZD-SW-312), the Natural Science Foundation of Yunnan Province

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3