Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis

Author:

Feng Ziwei1,Tong Qingbin1ORCID,Jiang Xuedong1,Lu Feiyu1,Du Xin1,Xu Jianjun1,Huo Jingyi1

Affiliation:

1. School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

Deep transfer learning has been widely used to improve the versatility of models. In the problem of cross-domain fault diagnosis in rolling bearings, most models require that the given data have a similar distribution, which limits the diagnostic effect and generalization of the model. This paper proposes a deep reconstruction transfer convolutional neural network (DRTCNN), which satisfies the domain adaptability of the model under cross-domain conditions. Firstly, the model uses a deep reconstruction convolutional automatic encoder for feature extraction and data reconstruction. Through sharing parameters and unsupervised training, the structural information of target domain samples is effectively used to extract domain-invariant features. Secondly, a new subdomain alignment loss function is introduced to align the subdomain distribution of the source domain and the target domain, which can improve the classification accuracy by reducing the intra-class distance and increasing the inter-class distance. In addition, a label smoothing algorithm considering the credibility of the sample is introduced to train the model classifier to avoid the impact of wrong labels on the training process. Three datasets are used to verify the versatility of the model, and the results show that the model has a high accuracy and stability.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3