Above-Ground Biomass Estimation of Plantation with Complex Forest Stand Structure Using Multiple Features from Airborne Laser Scanning Point Cloud Data

Author:

Gao Linghan,Zhang XiaoliORCID

Abstract

Accurate forest above-ground biomass (AGB) estimation is important for dynamic monitoring of forest resources and evaluation of forest carbon sequestration capacity. However, it is difficult to depict the forest’s vertical structure and its heterogeneity using optical remote sensing when estimating forest AGB, for the reason that electromagnetic waves cannot penetrate the canopy’s surface to obtain low vegetation information, especially in subtropical and tropical forests with complex layer structure and tree species composition. As an active remote sensing technology, an airborne laser scanner (ALS) can penetrate the canopy surface to obtain three-dimensional structure information related to AGB. This paper takes the Jiepai sub-forest farm and the Gaofeng state-owned forest farm in southern China as the experimental area and explores the optimal features from the ALS point cloud data and AGB inversion model in the subtropical forest with complex tree species composition and structure. Firstly, considering tree canopy structure, terrain features, point cloud structure and density features, 63 point cloud features were extracted. In view of the biomass distribution differences of different tree species, the random forest (RF) method was used to select the optimal features of each tree species. Secondly, four modeling methods were used to establish the AGB estimation models of each tree species and verify their accuracy. The results showed that the features related to tree height had a great impact on forest AGB. The top features of Cunninghamia Lanceolata (Chinese fir) and Eucalyptus are all related to height, Pinus (pine tree) is also related to terrain features and other broadleaved trees are also related to point cloud density features. The accuracy of the stepwise regression model is best with the AGB estimation accuracy of 0.19, 0.76, 0.71 and 0.40, respectively, for the Chinese fir, pine tree, eucalyptus and other broadleaved trees. In conclusion, the proposed linear regression AGB estimation model of each tree species combining different features derived from ALS point cloud data has high applicability, which can provide effective support for more accurate forest AGB and carbon stock inventory and monitoring.

Funder

the National Ministry of Science and Technology

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3