Abstract
In northern regions, like Finland, peak river discharge is principally controlled by maximum snowmelt runoff during spring (March–May). Global warming and climate change extensively influence both the quantity and temporal characteristics of peak discharge in northern rivers by altering snowpack accumulation and melt processes. This study analyzed peak spring flood discharge (PSFD) magnitude (PSFDM) and timing (PSFDT) in four natural rivers (Simojoki, Kuivajoki, Kiiminkijoki, and Temmesjoki) across northern Finland, in terms of long-term (1967–2011) variability, trends, and links to large-scale climate teleconnections. The PSFDM significantly (p < 0.05) declined in the Simojoki, Kuivajoki, and Kiiminkijoki rivers over time. Both the Simojoki and Kuivajoki rivers also experienced significant decreasing trends of about −0.33 and −0.3 (days year−1), respectively, in the PSFDT during 1967–2011. In these two rivers, the less and earlier PSFDs were principally attributable to the warmer spring seasons positively correlated with the North Atlantic Oscillation (NAO) in recent decades. Moreover, daily precipitation time series corresponding to the PSFD events showed no considerable effects on PSFDM and PSFDT changes in all the natural rivers studied. This suggests that less and earlier historical PSFDs in natural rivers at higher latitudes in northern Finland were primarily induced by warmer springtime temperatures influencing snowpack dynamics.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献