High Accuracy and Cost-Effective Fiber Optic Liquid Level Sensing System Based on Deep Neural Network

Author:

Dejband Erfan1,Manie Yibeltal Chanie2ORCID,Deng Yu-Jie2,Bitew Mekuanint Agegnehu3,Tan Tan-Hsu1,Peng Peng-Chun2

Affiliation:

1. Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

2. Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

3. Faculty of Computing, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar 26, Ethiopia

Abstract

In this paper, a novel liquid level sensing system is proposed to enhance the capacity of the sensing system, as well as reduce the cost and increase the sensing accuracy. The proposed sensing system can monitor the liquid level of several points at the same time in the sensing unit. Additionally, for cost efficiency, the proposed system employs only one sensor at each spot and all the sensors are multiplexed. In multiplexed systems, when changing the liquid level inside the container, the float position is changed and leads to an overlap or cross-talk between two sensors. To solve this overlap problem and to accurately predict the liquid level of each container, we proposed a deep neural network (DNN) approach to properly identify the water level. The performance of the proposed DNN model is evaluated via two different scenarios and the result proves that the proposed DNN model can accurately predict the liquid level of each point. Furthermore, when comparing the DNN model with the conventional machine learning schemes, including random forest (RF) and support vector machines (SVM), the DNN model exhibits the best performance.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3