Effective Heart Disease Prediction Using Machine Learning Techniques

Author:

Bhatt Chintan M.1ORCID,Patel Parth1,Ghetia Tarang1,Mazzeo Pier Luigi2ORCID

Affiliation:

1. Department of Computer Science and Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382007, India

2. Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy

Abstract

The diagnosis and prognosis of cardiovascular disease are crucial medical tasks to ensure correct classification, which helps cardiologists provide proper treatment to the patient. Machine learning applications in the medical niche have increased as they can recognize patterns from data. Using machine learning to classify cardiovascular disease occurrence can help diagnosticians reduce misdiagnosis. This research develops a model that can correctly predict cardiovascular diseases to reduce the fatality caused by cardiovascular diseases. This paper proposes a method of k-modes clustering with Huang starting that can improve classification accuracy. Models such as random forest (RF), decision tree classifier (DT), multilayer perceptron (MP), and XGBoost (XGB) are used. GridSearchCV was used to hypertune the parameters of the applied model to optimize the result. The proposed model is applied to a real-world dataset of 70,000 instances from Kaggle. Models were trained on data that were split in 80:20 and achieved accuracy as follows: decision tree: 86.37% (with cross-validation) and 86.53% (without cross-validation), XGBoost: 86.87% (with cross-validation) and 87.02% (without cross-validation), random forest: 87.05% (with cross-validation) and 86.92% (without cross-validation), multilayer perceptron: 87.28% (with cross-validation) and 86.94% (without cross-validation). The proposed models have AUC (area under the curve) values: decision tree: 0.94, XGBoost: 0.95, random forest: 0.95, multilayer perceptron: 0.95. The conclusion drawn from this underlying research is that multilayer perceptron with cross-validation has outperformed all other algorithms in terms of accuracy. It achieved the highest accuracy of 87.28%.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3