Abstract
Effective task scheduling in human-robot collaboration (HRC) scenarios is one of the great challenges of collaborative robotics. The shared workspace inside an industrial setting brings a lot of uncertainties that cannot be foreseen. A prior offline task scheduling strategy is ineffective in dealing with these uncertainties. In this paper, a novel online framework to achieve a resilient and reliable task schedule is presented. The framework can deal with deviations that occur during operation, different operator skills, error by the human or robot, and substitution of actors, while maintaining an efficient schedule by promoting parallel human-robot work. First, the collaborative job and the possible deviations are represented by AND/OR graphs. Subsequently, the proposed architecture chooses the most suitable path to improve the collaboration. If some failures occur, the AND/OR graph is adapted locally, allowing the collaboration to be completed. The framework is validated in an industrial assembly scenario with a Franka Emika Panda collaborative robot.
Funder
European Union’s Horizon 2020 research and innovation programme
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献