D-Limonene Promotes Anti-Obesity in 3T3-L1 Adipocytes and High-Calorie Diet-Induced Obese Rats by Activating the AMPK Signaling Pathway

Author:

Liao Jin-Ting,Huang Yu-Wen,Hou Chih-YaoORCID,Wang Jyh-Jye,Wu Chih-ChungORCID,Hsieh Shu-LingORCID

Abstract

D-limonene (LIM) is a common monoterpene compound, principally found in citrus essential oils. This study investigated the anti-obesity effect of LIM on the 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway in 3T3-L1 adipocytes and high-calorie diet-induced obese rats and confirmed the optimally effective dose of LIM. The 3T3-L1 adipocytes were treated with 0.05–0.4 mg/mL LIM for 10 days and oil red O and triglyceride (TG) content were used to determine the levels of lipid accumulation. The results showed that more than 0.05 mg/mL LIM inhibited lipid accumulation by reducing oil red O in 3T3-L1 adipocytes. Masses of 0.2 and 0.4 mg/mL LIM also decreased the TG contents in 3T3-L1 adipocytes. On the other hand, Wistar rats were given high-calorie diets, combined with LLIM (154 mg/kg) and HLIM (1000 mg/kg) treatments, for 16 weeks. The result shows that LLIM and HLIM decreased body weight, total fat tissue weight, and serum low-density lipoprotein-cholesterol (LDLc) levels. HLIM reduced serum TG and increased serum lipase and high-density lipoprotein-cholesterol (HDLc) levels. Moreover, the anti-obesity metabolic pathway showed that LIM (>0.05 mg/mL) in 3T3-L1 adipocytes and LIM (>154 mg/kg) in high-calorie diet-induced obese rats could activate the AMPK signaling pathway. The activated AMPK regulated the mRNA expression related to adipogenesis (PPARγ, C/EBPα, FABP4), lipogenesis (SREBP-1c, ACC, FAS), and lipolysis (ATGL, HSL) to inhibit obesity. This finding demonstrates that LIM has anti-obesity properties. Namely, it is seen that LIM acts by regulating the AMPK signaling pathway in 3T3-L1 adipocytes and high-calorie diet-induced obese rats. In terms of dose–response, LIM (154 mg/kg) would be an optimal effective dose for anti-obesity induced by a high-calorie diet.

Funder

Council of Agriculture, Executive Yuan, Republic of China

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3