Model to Predict Quality of Photovoltaic Panels Considering Customers’ Expectations

Author:

Pacana AndrzejORCID,Siwiec DominikaORCID

Abstract

The perspective of reducing negative climate changes in the area of production of electricity is beneficial mainly for photovoltaic panels (PV). In this case, qualitative–ecological interactions arise, which should be verified to properly select PV. It refers to the analysis of customers’ expectations of the utility of photovoltaic panels and their impact on the landscape (environments). Therefore, the purpose of the article was to propose a model to predict the quality of photovoltaic panels considering the expectations of the customers. According to the SMART(-ER) method, the purpose of the analysis was determined. Then, using brainstorming (BM), the criteria of PV were determined in groups: technical, utility, and aesthetic. The customer expectations were then obtained by questionnaire with the technique with the method of comparison in pairs and Likert scale. Customer expectations were initially verified using the AHP method, after which the key PV criteria of PV were selected. The relations between these criteria were then determined by the DEMATEL method. According to customer expectations, the quality of PV was calculated. The Weighted Product Model (WPM) was used this purpose. As a result, the best photovoltaic panel was predicted for the best PV for the customer by using the relative state scale. The developed model can be used by any entity for any photovoltaic panel and by individual personalized criteria for the customer and other interested parties. The originality of this model is the integration of selected techniques in such a way as to provide them with the greatest satisfaction after choosing a PV based on customer expectations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3