A New Decision Process for Choosing the Wind Resource Assessment Workflow with the Best Compromise between Accuracy and Costs for a Given Project in Complex Terrain

Author:

Barber SarahORCID,Schubiger Alain,Koller Sara,Eggli Dominik,Radi Alexander,Rumpf Andreas,Knaus HermannORCID

Abstract

In wind energy, the accuracy of the estimation of the wind resource has an enormous effect on the expected rate of return of a project. For a given project, the wind resource assessor is faced with a difficult choice of a wide range of simulation tools and workflows with varying accuracies (or “skill”) and costs. There is currently no guideline or process available in the industry for helping with the decision of the most “optimal” choice—and this is particularly challenging in mountainous (or “complex”) terrain. In this work, a new decision process for selecting the Wind Resource Assessment (WRA) workflow that would expect to deliver the best compromise between skill and costs for a given wind energy project is developed, with a focus on complex terrain. This involves estimating the expected skill and cost scores using a set of pre-defined weighted parameters. The new process is designed and tested by applying seven different WRA workflows to five different complex terrain sites. The quality of the decision process is then assessed for all the sites by comparing the decision made (i.e., choice of optimal workflow) using the expected skill and cost scores with the decision made using the actual skill and cost scores (obtained by comparing measurements and simulations at a validation location). The results show that the decision process works well, but the accuracy decreases as the site complexity increases. It is therefore concluded that some of the parameter weightings should be dependent on site complexity. On-going work involves collecting more data from a large range of sites, implementing measures to reduce the subjectivity of the process and developing a reliable and robust automated decision tool for the industry.

Funder

Swiss Federal Office of Energy

Deutsche Bundesstiftung Umwelt

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

1. Fördergesellschaft Windenergie (2007). TR 6—Bestimmung von Windpotenzial und Energieerträgen, Fördergesellschaft Windenergie.

2. E-Wind: Steady state CFD approach for stratified flows used for site assessment at Enercon;J. Phys. Conf. Ser.,2018

3. A New High-Resolution Map of World Mountains and an Online Tool for Visualizing and Comparing Characterizations of Global Mountain Distributions;Mt. Res. Dev.,2018

4. The Role of Katabatic Winds on the Antarctic Surface Wind Regime;Mon. Weather Rev.,2003

5. Zervos, A., Ehmann, H., Helm, P., and Stephens, H.S. (1996, January 20–24). Exploring the limits of WAsP the wind atlas analysis and application program. Proceedings of the European Union wind Energy Conference, Göteborg, Sweden.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3