Roof Hydraulic Fracturing for Preventing Floor Water Inrush under Multi Aquifers and Mining Disturbance: A Case Study

Author:

Wang PengpengORCID,Jiang Yaodong,Ren Qingshan

Abstract

Water inrush disasters from the coal seam floor occur frequently due to the high water pressure of the Ordovician limestone aquifer, multiple aquifers and strong mining disturbance. We presented a model of water-resisting key strata (WRKS) to investigate the mechanism of floor water inrush from multiple aquifers in deep coal mines. Roof hydraulic fracturing (RHF) for controlling floor water inrush and multi-parameter monitoring were proposed and validated in the Xingdong coal mine in Xingtai, Hebei Province. The results indicated that the periodic weighting step of the test working face after RHF was 9.53 m, which was 61.42% less than that of the working face without RHF (24.7 m). The floor failure depth was 30 m, which was 34.4% less than that of the zones without RHF (45.7 m). Hydraulic fracturing weakened the strength of the overlying strata to control the weighting step and reduce the mining disturbance stress, and the stability of the floor WRKS was enhanced, thereby preventing water inrush from the coal seam floor. The research results provide a solution for preventing floor damage and floor water inrush under strong mining disturbance and in complex hydrogeological environments in deep mining.

Funder

National Natural Science Foundation of China

Science and Technology Plant Project of Inner Mongolia Autonomous Region

Major Scientific and Technological Innovation Project of Shandong Province

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference51 articles.

1. Application of the Analytic Hierarchy Process to Assessment of Water Inrush: A Case Study for the No. 17 Coal Seam in the Sanhejian Coal Mine, China;Mine Water Environ.,2013

2. Investigations of groundwater bursting into coal mine seam floors from fault zones;Int. J. Rock Mech. Min. Sci.,2004

3. A strategy for modeling ground water rebound in abandoned deep mine systems;Ground Water,2001

4. Inversion of seepage channels based on mining-induced microseismic data;Int. J. Rock Mech. Min. Sci.,2020

5. Technology and application of large curtain grouting water conservation mining based on macroscopic and mesoscopic characteristics of rock mass;J. China Coal Soc.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3