Study on the failure characteristics of overburden and the evolution law of seepage field in deep buried thick coal seam under aquifers

Author:

Li Yang1,Lei Xinghai2ORCID,Wang Nan1,Ren Yuqi1,Jin Xiangyang1,Li Guoshuai1,Li Tiezheng1,Ou Xiangji1

Affiliation:

1. China University of Mining and Technology - Beijing

2. China University of Mining and Technology Beijing Campus

Abstract

Abstract Water inrush at roof area seriously affects the safety of coal mines. The characteristics of aquifer and aquiclude at Wutongzhuang Mine are analyzed. Considering the effect of seepage field, a formula for calculating the height of water-conducting fractured zone (HWCFZ) in deep buried thick coal seam mining is derived. A damage-seepage coupling model with rock porosity and damage factor as independent variables is established. FLAC3D is re-developed by using FISH language, and the fluid-solid coupling calculation model of deep buried thick coal seam mining is established. The evolution law of the plastic zone, seepage field and water-conducting fractured zone (WCFZ)of the overburden in the gob with the advancement of the working face is analyzed, the main conclusions are as follows: With the continuous advancement of the working face, the distribution shape of the plastic zone and seepage field has changed from a trapezoidal to a saddle shape; when the working face reaches full mining, the maximum heights of the caving zone, fractured zone and HWCFZ are 24m, 113m, and 123 m, respectively; the 50m-thick sandy shale aquifer is penetrated by the WCFZ, and the WCFZ on the side of the working face above the gob is the main water channel when the working face is advanced to 220m. The on-site monitoring results showed that the 50m-thick sandy shale is successively connected by the WCFZ. The results of comprehensive research showed that the HWCFZ cannot be calculated by traditional formulas when mining deep buried thick coal seams.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3