Energy Saving in Trigeneration Plant for Food Industries

Author:

Radchenko Andrii,Radchenko MykolaORCID,Mikielewicz DariuszORCID,Pavlenko AnatoliyORCID,Radchenko Roman,Forduy Serhiy

Abstract

The trigeneration plants for combined cooling, heating, and electricity supply, or integrated energy systems (IES), are mostly based on gas reciprocating engines. The fuel efficiency of gas reciprocating engines depends essentially on air intake temperatures. The transformation of the heat removed from the combustion engines into refrigeration is generally conducted by absorption lithium-bromide chillers (ACh). The peculiarity of refrigeration generation in food technologies is the use of chilled water of about 12 °C instead of 7 °C as the most typical for ACh. This leads to a considerable cooling potential not realized by ACh that could be used for cooling the engine intake air. A refrigerant ejector chiller (ECh) is the simplest in design, cheap, and can be applied as the low-temperature stage of a two-stage absorption-ejector chiller (AECh) to provide engine intake air cooling and increase engine fuel efficiency as result. The monitoring data on gas engine fuel consumption and power were analyzed in order to evaluate the effect of gas engine cyclic air cooling.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference63 articles.

1. Zellner, S., Burgtorf, J., and Kraft-Schäfer, D. (2016). Cogeneration & Trigeneration—How to Produce Energy Efficiently: A Practical Guide for Experts in Emerging and Developing Economies, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.

2. High efficiency micro trigeneration systems;Appl. Therm. Eng.,2013

3. (2021, June 22). CIMAC Position Paper Gas Engine Aftertreatment Systems by CIMAC WG 17, Gas Engines, May 2017. Available online: https://www.cimac.com/cms/upload/Publication_Press/WG_Publications/CIMAC_WG17_2017_Aug_Position_Paper_Gas_Engine_Aftertreatment_Systems.pdf.

4. (2021, June 22). Jenbacher. Available online: http://www.intma.ru/energetica/power_stations/thermal_ps_trigeneration_ru.html.

5. Performance tests of two small trigeneration pilot plants;Appl. Therm. Eng.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3