Enhancing the Fuel Efficiency of Cogeneration Plants by Fuel Oil Afterburning in Exhaust Gas before Boilers

Author:

Kornienko Victoria1ORCID,Radchenko Mykola1ORCID,Radchenko Andrii1,Koshlak Hanna2ORCID,Radchenko Roman1

Affiliation:

1. Machinebuilding Institute, Admiral Makarov National University of Shipbuilding, Heroes of Ukraine Avenue 9, 54025 Mykolayiv, Ukraine

2. Department of Building Physics and Renewable Energy, Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

Abstract

Cogeneration or combined heat and power (CHP) has found wide application in various industries because it very effectively meets the growing demand for electricity, steam, hot water, and also has a number of operational, environmental, economic advantages over traditional electrical and thermal systems. Experimental and theoretical investigations of the afterburning of fuel oil in the combustion engine exhaust gas at the boiler inlet were carried out in order to enhance the efficiency of cogeneration power plants; this was achieved by increasing the boiler steam capacity, resulting in reduced production of waste heat and exhaust emissions. The afterburning of fuel oil in the exhaust gas of diesel engines is possible due to a high the excess air ratio (three to four). Based on the experimental data of the low-temperature corrosion of the gas boiler condensing heat exchange surfaces, the admissible values of corrosion rate and the lowest exhaust gas temperature which provide deep exhaust gas heat utilization and high efficiency of the exhaust gas boiler were obtained. The use of WFE and afterburning fuel oil provides an increase in efficiency and power of the CPPs based on diesel engines of up to 5% due to a decrease in the exhaust gas temperature at the outlet of the EGB from 150 °C to 90 °C and waste heat, accordingly. The application of efficient environmentally friendly exhaust gas boilers with low-temperature condensing surfaces can be considered a new and prosperous trend in diesel engine exhaust gas heat utilization through the afterburning of fuel oil and in CPPs as a whole.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3