Optimization of the Adsorption/Desorption Contribution from Metal-Organic-Heat-Carrier Nanoparticles in Waste Heat Recovery Applications: R245fa/MIL101 in Organic Rankine Cycles

Author:

Cavazzini GiovannaORCID,Bari Serena

Abstract

The efficient recovery of low temperature waste heat, representing from 25% up to 55% of the energy losses in industrial processes, still remains a challenge and even Organic Rankine Cycles (ORCs) experience a strong efficiency decay in such a low temperature operating range (T < 150 °C). In similar heat transfer processes, several nanofluids have been proposed as a solution for increasing heat transfer efficiency, but they produced only moderate enhancements of the heat transfer efficiency in comparison with pure fluids. This paper aims at numerically assessing the potential gain in efficiency deriving from the application of an unconventional type of nanoparticles, the metal-organic heat carriers (MOHCs), in the ORC field. In comparison with standard nanoparticles, these MOHCs make it possible to extract additional heat from the endothermic enthalpy of desorption, with a theoretically high potential for boosting the heat transfer capacity of ORC systems. In this paper a numerical model was developed and customized for considering the adsorption/desorption processes of the pure fluid R245fa (pentafluoropropane) combined with a crystal structure for porous chromium terephthalate (MIL101). The R245fa/MIL101 nanofluid behavior was experimentally characterized, defining proper semi-emipirical correlations. Then, an optimization procedure was developed, combining the numerical model with a PSO algorithm, to optimize the thermodynamic conditions in the ORC so as to maximize the contribution of desorption/absorption processes. The results confirm the increase in net power output (+2.9% for 100 °C) and in expander efficiency (+2.4% for 100 °C) at very low heat source temperature. The relevance of tuning the operating cycle and the nanofluid properties is also demonstrated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference63 articles.

1. IEA (2015). Industrial Excess Heat Recovery-Technologies and Applications-Annex XV, International Energy Agency.

2. Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies;Appl. Energy,2015

3. An Overview of Domestic Technologies for Waste Heat Utilization;Energy Conserv. Technol.,2011

4. Low-grade heat conversion into power using organic Rankine cycles–A review of various applications;Renew. Sustain. Energy Rev.,2011

5. Heat recovery potentials and technologies in industrial zones;J. Energy Inst.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3