Combined Vertical-Horizontal Flow Biochar Filter for Onsite Wastewater Treatment—Removal of Organic Matter, Nitrogen and Pathogens

Author:

Dalahmeh Sahar S,Assayed Almoayied,Stenström Ylva

Abstract

This study investigated the performance of a combined vertical-horizontal flow biochar filter (VFF-HFF) system in terms of organic matter, total nitrogen (Tot-N), Escherichia coli and Salmonella removal and explored the effects of hydraulic loading rate (HLR) on pollutant removal. The combined VFF-HFF system used biochar as the filter medium and comprised two stacked sections: (i) an aerobic vertical flow filter (VFF) in which the wastewater percolated through the biochar medium in unsaturated mode and (ii) a horizontal flow filter (HFF), in which the biochar was saturated with water and had limited access to air, to enable anaerobic conditions and enhance the denitrification process. The system was tested over 126 weeks using real wastewater applied at different HLR (23, 31, 39 L m−2 day−1). The results showed that long-term removal of organic matter in the entire system was 93 ± 3%, with most (87 ± 5%) occurring in the VFF. For Tot-N, the long-term removal was 71 ± 12%, with increasing trends for nitrification in the VFF and denitrification in the HFF. Mean long-term nitrification efficiency in the VFF was 65 ± 15% and mean long-term denitrification efficiency in the HFF 49 ± 14%. Increasing HLR from 23 to 31 L m−2 day−1 increased the nitrification efficiency from 42 to 61%. Increasing the HLR further to 39 L m−2 day−1 decreased the denitrification efficiency from 45 to 25%. HLR had no significant effects on VFF and HFF performance in terms of E. coli and Salmonella removal, although the VFF achieved a 1.09–2.1 log10 unit reduction and the HFF achieved a 2.48–3.39 log10 unit reduction. Thus, long-term performance, i.e., removal of pollutants measured during the last 52 weeks of the experiment, was satisfactory in terms of organic matter and nitrogen removal, with no signs of clogging, indicating good robustness of the combined VFF-HFF biochar filter system.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3