Potential of Biochar Filters for Onsite Wastewater Treatment: Effects of Biochar Type, Physical Properties and Operating Conditions

Author:

Perez-Mercado Luis,Lalander Cecilia,Berger Christina,Dalahmeh Sahar

Abstract

The potential of biochar as a filter medium for onsite wastewater treatment was investigated in five sub-studies. Sub-study 1 compared pollutant removal from wastewater using pine-spruce biochar, willow biochar and activated biochar (undefined biomass) filters. Sub-study 2 investigated the effects of particle size (0.7, 1.4 and 2.8 mm) on pollutant removal using pine-spruce biochar filters. In sub-studies 3 and 4, the effects of the hydraulic loading rate (HLR; 32–200 L m−2) and organic loading rates (OLR; 5–20 g biochemical oxygen demand (BOD5) m−2) on pollutant removal using pine-spruce biochar filters were investigated, while sub-study 5 compared pollutant removal in pine-spruce biochar filters and in sand. The removal of chemical oxygen demand (COD), total nitrogen (Tot-N), ammonium nitrogen (NH4-N), phosphates (PO4-P) and total phosphorus (Tot-P) was monitored in all sub-studies. All types of biochar and all particle sizes of pine-spruce biochar achieved a high degree of removal of organic material (COD > 90%). Removal of Tot-P and PO4-P was higher in willow biochar and activated biochar (>70%) than in pine-spruce biochar during the first two months, but then decreased to similar levels as in pine-spruce biochar. Among the particle sizes tested, 0.7 mm pine-spruce biochar showed the lowest amount of Tot-P removal, while 2.8 mm pine-spruce biochar showed the lowest level of NH4-N removal. Different OLRs and HLRs did not influence COD removal (94–95%). Pine-spruce biochar showed a better degree of removal of Tot-N than sand. In conclusion, biochar is a promising filter medium for onsite wastewater treatment as a replacement or complement to sand, achieving high and robust performance regardless of the parent material, particle size or loading conditions.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3