Author:
Perez-Mercado Luis,Lalander Cecilia,Berger Christina,Dalahmeh Sahar
Abstract
The potential of biochar as a filter medium for onsite wastewater treatment was investigated in five sub-studies. Sub-study 1 compared pollutant removal from wastewater using pine-spruce biochar, willow biochar and activated biochar (undefined biomass) filters. Sub-study 2 investigated the effects of particle size (0.7, 1.4 and 2.8 mm) on pollutant removal using pine-spruce biochar filters. In sub-studies 3 and 4, the effects of the hydraulic loading rate (HLR; 32–200 L m−2) and organic loading rates (OLR; 5–20 g biochemical oxygen demand (BOD5) m−2) on pollutant removal using pine-spruce biochar filters were investigated, while sub-study 5 compared pollutant removal in pine-spruce biochar filters and in sand. The removal of chemical oxygen demand (COD), total nitrogen (Tot-N), ammonium nitrogen (NH4-N), phosphates (PO4-P) and total phosphorus (Tot-P) was monitored in all sub-studies. All types of biochar and all particle sizes of pine-spruce biochar achieved a high degree of removal of organic material (COD > 90%). Removal of Tot-P and PO4-P was higher in willow biochar and activated biochar (>70%) than in pine-spruce biochar during the first two months, but then decreased to similar levels as in pine-spruce biochar. Among the particle sizes tested, 0.7 mm pine-spruce biochar showed the lowest amount of Tot-P removal, while 2.8 mm pine-spruce biochar showed the lowest level of NH4-N removal. Different OLRs and HLRs did not influence COD removal (94–95%). Pine-spruce biochar showed a better degree of removal of Tot-N than sand. In conclusion, biochar is a promising filter medium for onsite wastewater treatment as a replacement or complement to sand, achieving high and robust performance regardless of the parent material, particle size or loading conditions.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献