Network Attack Classification in IoT Using Support Vector Machines

Author:

Ioannou ChristianaORCID,Vassiliou VasosORCID

Abstract

Machine learning (ML) techniques learn a system by observing it. Events and occurrences in the network define what is expected of the network’s operation. It is for this reason that ML techniques are used in the computer network security field to detect unauthorized intervention. In the event of suspicious activity, the result of the ML analysis deviates from the definition of expected normal network activity and the suspicious activity becomes apparent. Support vector machines (SVM) are ML techniques that have been used to profile normal network activity and classify it as normal or abnormal. They are trained to configure an optimal hyperplane that classifies unknown input vectors’ values based on their positioning on the plane. We propose to use SVM models to detect malicious behavior within low-power, low-rate and short range networks, such as those used in the Internet of Things (IoT). We evaluated two SVM approaches, the C-SVM and the OC-SVM, where the former requires two classes of vector values (one for the normal and one for the abnormal activity) and the latter observes only normal behavior activity. Both approaches were used as part of an intrusion detection system (IDS) that monitors and detects abnormal activity within the smart node device. Actual network traffic with specific network-layer attacks implemented by us was used to create and evaluate the SVM detection models. It is shown that the C-SVM achieves up to 100% classification accuracy when evaluated with unknown data taken from the same network topology it was trained with and 81% accuracy when operating in an unknown topology. The OC-SVM that is created using benign activity achieves at most 58% accuracy.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-Based Intrusion Detection Methods in IoT Systems: A Comprehensive Review;Electronics;2024-09-11

2. Detecting multiple jammers using Fuzzy-Logic Intrusion Detection System (FLIDS);2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29

3. DDoS and Botnet Attacks: A Survey of Detection and Prevention Techniques;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

4. Enhancing Internet of Things Network Security Through an Ensemble-Learning Approach;Proceedings of the 7th International Conference on Networking, Intelligent Systems and Security;2024-04-18

5. Securing internet of things using machine and deep learning methods: a survey;Cluster Computing;2024-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3