Abstract
Combined geometric positioning using images with different resolutions and imaging sensors is being increasingly widely utilized in practical engineering applications. In this work, we attempt to perform the combined geometric positioning and performance analysis of multi-resolution optical images from satellite and aerial platforms based on weighted rational function model (RFM) bundle adjustment without using ground control points (GCPs). Firstly, we introduced an integrated image matching method combining least squares and phase correlation. Next, for bundle adjustment, a combined model of the geometric positioning based on weighted RFM bundle adjustment was derived, and a method for weight determination was given to make the weights of all image points variable. Finally, we conducted experiments using a case study in Shanghai with ZiYuan-3 (ZY-3) satellite imagery, GeoEye-1 satellite imagery, and Digital Mapping Camera (DMC) aerial imagery to validate the effectiveness of the proposed weighted method, and to investigate the positioning accuracy by using different combination scenarios of multi-resolution heterogeneous images. The experimental results indicate that the proposed weighted method is effective, and the positioning accuracy of different combination scenarios can give a good reference for the combined geometric positioning of multi-stereo heterogeneous images in future practical engineering applications.
Subject
General Earth and Planetary Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献