Flexible Patterns for Soft 3D Printed Fabrications

Author:

Chynybekova Kanygul,Choi Soo-MiORCID

Abstract

Rapid improvements in 3D printing technology bring about new possibilities to print with different types of printing materials. New studies have investigated and presented various printing methodologies. However, the majority of these studies are targeted at experimenting with rigid 3D printed objects rather than soft 3D printed fabrications. The presented research considers soft 3D printing, particularly focusing on the development of flexible patterns based on non-homogenous hybrid honeycombs for the interior of 3D printed objects to improve their flexibility and additional stretchability including the lightweight interior. After decomposing the area of an object into regions, our method creates a specific design where patterns are positioned at each partitioned region of the object area by connecting opposite sides of the boundary. The number of regions is determined according to application requirements or by user demands. The current study provides the results of conducted experiments. The aim of this research is to create flexible, stretchable, and lightweight soft 3D printed objects by exploring their deformation responses under tension, compression and flexure tests. This method generates soft 3D printed fabrications with physical properties that meet user demands.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3