Abstract
In this study, the heat and mass transfer characteristics of nanofluid flow over a nonlinearly stretching sheet are investigated. The important effects of axisymmetric of thermal conductivity and viscous dissipation have been included in the model of nanofluids. The Buongiorno model is considered to solve the nanofluid boundary layer problem. The governing nonlinear partial differential equations have been transformed into a system of ordinary differential equations and are solved numerically via the shooting technique. The validity of this method was verified by comparison with previous work performed for nanofluids without the effects of the magnetic field and viscous dissipation. The analytical investigation is carried out for different governing parameters, namely, the Brownian motion parameter, thermophoresis parameter, magnetic parameter, Biot number, and Eckert number. The results indicate that the skin friction coefficient has a direct relationship with the Brownian motion number and thermophoresis number. Moreover, it can be seen that the Nusselt number decreases with the increase of the magnetic parameter and Eckert number.
Funder
Universiti Kebangsaan Malaysia
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献