Thermal Conductivity Modeling of Nanofluids Contain MgO Particles by Employing Different Approaches

Author:

Wang Na,Maleki Akbar,Alhuyi Nazari Mohammad,Tlili Iskander,Safdari Shadloo MostafaORCID

Abstract

The existence of solid-phase nanoparticles remarkably improves the thermal conductivity of the fluids. The enhancement in this property of the nanofluids is affected by different items such as the solid-phase volume fraction and dimensions, temperature, etc. In the current paper, three different mathematical models, including polynomial correlation, Multivariate Adaptive Regression Spline (MARS), and Group Method of Data Handling (GMDH), are applied to forecast the thermal conductivity of nanofluids containing MgO particles. The inputs of the model are the base fluid thermal conductivity, volume concentration, and average dimension of solid-phase, and nanofluids’ temperature. Comparing the proposed models revealed higher confidence of GMDH in estimating the thermal conductivity, which is attributed to its complicated structure and more appropriate consideration of the input’s interaction. The values of R-squared for the correlation, MARS, and GMDH are 0.9949, 0.9952, and 0.9991, respectively. In addition, based on the sensitivity analysis, the effect of thermal conductivity of the base fluid on the overall thermal conductivity of nanofluids is more remarkable compared with the other inputs such as volume fraction, temperature, and dimensions of the particles which are used as the inputs of the models.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3