Optimizing Sensor Positions in the Stress Wave Tomography of Internal Defects in Hardwood

Author:

Du Xiaochen12,Zheng Yilei1,Feng Hailin2ORCID

Affiliation:

1. College of Mathematics and Computer Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China

2. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China

Abstract

Stress wave tomography technology uses instruments to collect stress wave velocity data via sensors, visualizes those velocity data, and reconstructs an image of internal defects using estimated velocity distribution. This technology can be used to detect the size, position, and shape of internal defects in hardwood, and it has increasingly attracted the attention of researchers. In order to obtain enough stress wave signals, 12 sensors are usually equidistantly positioned around the cross-section of trunks like a clock. Although this strategy is reasonable and convenient, it is obviously not the optimal signal acquisition strategy for all defects. In this paper, a novel sensor position’s optimization method for high-quality stress wave tomography is proposed. The relationship between the shape of defects and the planar distribution of sensors is established by taking the ray penetration ratio and degree of equidistant distribution of sensors as indicators. Through the construction of the fitness function and optimization conditions, the optimal strategy for the planar distribution of sensors was determined using the Genetic Algorithm. Seven samples containing simulated defects and real tree trunks were used to test the proposed algorithm, and the comparison results show that the image of internal defects in hardwood can be reconstructed with high accuracy after optimizing the sensor positions.

Funder

public welfare technology research project of Zhejiang province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3