Characteristics of Hf0.5Zr0.5O2 Thin Films Prepared by Direct and Remote Plasma Atomic Layer Deposition for Application to Ferroelectric Memory

Author:

Hong Da Hee1,Yoo Jae Hoon1,Park Won Ji1,Kim So Won1ORCID,Kim Jong Hwan12,Uhm Sae Hoon2,Lee Hee Chul1ORCID

Affiliation:

1. Department of Advanced Materials Engineering, Tech University of Korea, Siheung 15073, Republic of Korea

2. EN2CORE Technology Inc., Daejeon 18469, Republic of Korea

Abstract

Hf0.5Zr0.5O2 (HZO) thin film exhibits ferroelectric properties and is presumed to be suitable for use in next-generation memory devices because of its compatibility with the complementary metal–oxide–semiconductor (CMOS) process. This study examined the physical and electrical properties of HZO thin films deposited by two plasma-enhanced atomic layer deposition (PEALD) methods— direct plasma atomic layer deposition (DPALD) and remote plasma atomic layer deposition (RPALD)—and the effects of plasma application on the properties of HZO thin films. The initial conditions for HZO thin film deposition, depending on the RPALD deposition temperature, were established based on previous research on HZO thin films deposited by the DPALD method. The results show that as the measurement temperature increases, the electric properties of DPALD HZO quickly deteriorate; however, the RPALD HZO thin film exhibited excellent fatigue endurance at a measurement temperature of 60 °C or less. HZO thin films deposited by the DPALD and RPALD methods exhibited relatively good remanent polarization and fatigue endurance, respectively. These results confirm the applicability of the HZO thin films deposited by the RPALD method as ferroelectric memory devices.

Funder

EN2CORE Technology, Inc.

National Research Foundation

Ministry of Education, Republic of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3