Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance

Author:

Velasco Andres12ORCID,Ryu Yu Kyoung1ORCID,Hamada Assia1ORCID,de Andrés Alicia3ORCID,Calle Fernando12ORCID,Martinez Javier14ORCID

Affiliation:

1. Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain

2. Departamento de Ingeniería Electrónica, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, 28040 Madrid, Spain

3. Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain

4. Departamento de Ciencia de Materiales, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, C/Profesor Aranguren s/n, 28040 Madrid, Spain

Abstract

Laser-induced graphene (LIG) is a graphenic material synthesized from a polymeric substrate through point-by-point laser pyrolysis. It is a fast and cost-effective technique, and it is ideal for flexible electronics and energy storage devices, such as supercapacitors. However, the miniaturization of the thicknesses of the devices, which is important for these applications, has still not been fully explored. Therefore, this work presents an optimized set of laser conditions to fabricate high-quality LIG microsupercapacitors (MSC) from 60 µm thick polyimide substrates. This is achieved by correlating their structural morphology, material quality, and electrochemical performance. The fabricated devices show a high capacitance of 22.2 mF/cm2 at 0.05 mA/cm2, as well as energy and power densities comparable to those of similar devices that are hybridized with pseudocapacitive elements. The performed structural characterization confirms that the LIG material is composed of high-quality multilayer graphene nanoflakes with good structural continuity and an optimal porosity.

Funder

Spanish Government

“ESF Investing in your future”

project REGRAP-2D

Comunidad de Madrid

Ministerio de Ciencia, Innovación y Universidades

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3