Novel Risks of Unfavorable Corticosteroid Response in Patients with Mild-to-Moderate COVID-19 Identified Using Artificial Intelligence-Assisted Analysis of Chest Radiographs

Author:

Kim Min Hyung1ORCID,Shin Hyun Joo23ORCID,Kim Jaewoong45ORCID,Jo Sunhee4ORCID,Kim Eun-Kyung23ORCID,Park Yoon Soo1,Kyong Taeyoung4ORCID

Affiliation:

1. Department of Internal Medicine, Division of Infectious Disease, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea

2. Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea

3. Center for Digital Health, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea

4. Department of Hospital Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si 16995, Republic of Korea

5. Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea

Abstract

The prediction of corticosteroid responses in coronavirus disease 2019 (COVID-19) patients is crucial in clinical practice, and exploring the role of artificial intelligence (AI)-assisted analysis of chest radiographs (CXR) is warranted. This retrospective case–control study involving mild-to-moderate COVID-19 patients treated with corticosteroids was conducted from 4 September 2021, to 30 August 2022. The primary endpoint of the study was corticosteroid responsiveness, defined as the advancement of two or more of the eight-categories-ordinal scale. Serial abnormality scores for consolidation and pleural effusion on CXR were obtained using a commercial AI-based software based on days from the onset of symptoms. Amongst the 258 participants included in the analysis, 147 (57%) were male. Multivariable logistic regression analysis revealed that high pleural effusion score at 6–9 days from onset of symptoms (adjusted odds ratio of (aOR): 1.022, 95% confidence interval (CI): 1.003–1.042, p = 0.020) and consolidation scores up to 9 days from onset of symptoms (0–2 days: aOR: 1.025, 95% CI: 1.006–1.045, p = 0.010; 3–5 days: aOR: 1.03 95% CI: 1.011–1.051, p = 0.002; 6–9 days: aOR; 1.052, 95% CI: 1.015–1.089, p = 0.005) were associated with an unfavorable corticosteroid response. AI-generated scores could help intervene in the use of corticosteroids in COVID-19 patients who would not benefit from them.

Funder

Yonsei University College of Medicine

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3