Characterizing the Topographic Changes and Land Subsidence Associated with the Mountain Excavation and City Construction on the Chinese Loess Plateau

Author:

Pu Chuanhao,Xu Qiang,Zhao Kuanyao,Jiang Yanan,Hao Lina,Liu Jialiang,Chen Wanlin,Kou Pinglang

Abstract

A mega project, Mountain Excavation and City Construction (MECC), was launched in the hilly and gully region of the Chinese Loess Plateau in 2012, in order to address the shortage of available land and create new flat land for urban construction. However, large-scale land creation and urban expansion significantly alters the local geological environment, leading to severe ground deformation. This study investigated the topographic changes, ground deformation, and their interactions due to the MECC project in the Yan’an New District (YND). First, new surface elevations were generated using ZiYuan-3 (ZY-3) stereo images acquired after the construction in order to map the local topographic changes and the fill thickness associated with the MECC project. Then, the interferometric synthetic aperture radar (InSAR) time series and 32 Sentinel-1A images were used to assess the spatial patterns of the ground deformation in the YND during the postconstruction period (2017–2018). By combining the InSAR-derived results and topographic change features, the relationship between the ground deformation and large-scale land creation was further analyzed. The results indicated that the MECC project in the YND has created over 22 km2 of flat land, including 10.8 km2 of filled area, with a maximum fill thickness of ~110 m. Significant uneven ground deformation was detected in the land-creation area, with a maximum subsidence rate of approximately 121 mm/year, which was consistent with the field survey. The strong correlation between the observed subsidence patterns and the land creation project suggested that this recorded uneven subsidence was primarily related to the spatial distribution of the filling works, along with the changes in the thickness and geotechnical properties of the filled loess; moreover, rapid urbanization, such as road construction, can accelerate the subsidence process. These findings can guide improvements in urban planning and the mitigation of geohazards in regions experiencing large-scale land construction.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3