Abstract
An automatic custom-made procedure is developed to identify macroplastic debris loads in coastal and marine environment, through hyperspectral imaging from unmanned aerial vehicles (UAVs). Results obtained during a remote-sensing field campaign carried out in the seashore of Sassari (Sardinia, Italy) are presented. A push-broom-sensor-based spectral device, carried onboard a DJI Matrice 600 drone, was employed for the acquisition of spectral data in the range 900−1700 nm. The hyperspectral platform was realized by assembling commercial devices, whereas algorithms for mosaicking, post-flight georeferencing, and orthorectification of the acquired images were developed in-house. Generation of the hyperspectral cube was based on mosaicking visible-spectrum images acquired synchronously with the hyperspectral lines, by performing correlation-based registration and applying the same translations, rotations, and scale changes to the hyperspectral data. Plastics detection was based on statistically relevant feature selection and Linear Discriminant Analysis, trained on a manually labeled sample. The results obtained from the inspection of either the beach site or the sea water facing the beach clearly show the successful separate identification of polyethylene (PE) and polyethylene terephthalate (PET) objects through the post-processing data treatment based on the developed classifier algorithm. As a further implementation of the procedure described, direct real-time processing, by an embedded computer carried onboard the drone, permitted the immediate plastics identification (and visual inspection in synchronized images) during the UAV survey, as documented by short video sequences provided in this research paper.
Subject
General Earth and Planetary Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献