Hyperspectral longwave infrared reflectance spectra of naturally dried algae, anthropogenic plastics, sands and shells

Author:

Garaba Shungudzemwoyo P.ORCID,Acuña-Ruz TomásORCID,Mattar Cristian B.

Abstract

Abstract. Remote sensing of litter is foreseen to become an important source of additional information relevant to scientific awareness about plastic pollution. Here, we document directional hemispherical reflectance measurements of anthropogenic and natural materials gathered along the shorelines of the Chiloé Archipelago, Chile. These spectral observations were completed in a Chilean laboratory using a state-of-the-art hyperspectral HyLogger-3™ thermal infrared (TIR) spectrometer starting from the medium-wave infrared spectrum (6 µm) and going to the longwave infrared (14.5 µm) spectrum at 0.025 µm intervals. The samples we investigated included sands, shells, algae, nautical ropes, Styrofoam®, gunny sacks and several fragments of plastic-based items. The apparent visible colours of these samples included shades of black, blue, brown, green, orange, white and yellow. We grouped the samples using robust statistical approaches (derivatives, peak-seeking technique) and visual analyses of the derived hyperspectral reflectances. In each group we derived an average or TIR end-member signal and determined diagnostic wavebands. Most of the diagnostic wavebands picked were found to be inside the atmospheric window of the TIR spectrum region. Furthermore, this laboratory reference dataset and findings might become useful in related field observations using similar thermal infrared technologies, especially in identifying anomalies resulting from environmental and meteorological perturbations. Validation and verification of proposed diagnostic wavebands would be part of a continuing effort to advance TIR remote sensing knowledge as well as support robust detection algorithm development to potentially distinguish plastics in litter throughout the natural environments. Data are available in open-access form via the online repository PANGAEA, database of the World Data Center for Marine Environmental Sciences: https://doi.org/10.1594/PANGAEA.919536 (Acuña-Ruz and Mattar, 2020).

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3