Detecting Offshore Drilling Rigs with Multitemporal NDWI: A Case Study in the Caspian Sea

Author:

Zhu Hui,Jia Gongxu,Zhang Qingling,Zhang Shan,Lin Xiaoli,Shuai Yanmin

Abstract

Offshore drilling rigs are the foundation of oil and gas exploitation in water areas. Their spatial and temporal distribution, state attributes and other information directly reflect the exploitation level of regional oil and gas resources. Therefore, it is very important to build an automatic detecting method for offshore drilling rigs with good performance to accurately capture the temporal and spatial distribution and state of oil and gas exploitation activities. At present, there are two main groups of methods for offshore drilling rigs: invariant feature-based methods and nighttime firelight-based methods. Methods based on invariant location are more subjective in terms of their parameter settings and require intensive computation. Nighttime light-based methods are largely unable to identify offshore drilling rigs without associated waste gas ignition. Furthermore, multiple offshore drilling rigs in close proximity to one another cannot be effectively distinguished with low spatial resolution imagery. To address these shortcomings, we propose a new method for the automatic identification of offshore drilling rigs based on Landsat-7 ETM+ images from 2018 to 2019, taking the Caspian Sea as the research area. We build a nominal annual cloud and cloud shadow-free Normalized Difference Water Index (NDWI) composite by designing an optimal NDWI compositing method based of the influence of cloud and cloud shadow on the NDWI values of water, bare land (island) and offshore drilling rigs. The classification of these objects is simultaneously done during the compositing process, with the following rules: water body (Max_NDWI > 0.55), bare land (island) (Min_NDWI < −0.05) and offshore drilling rig (0 < Mean_NDWI < 0.4). A threshold segmentation and postprocessing were carried out to further refine the results. Using this method, 497 offshore platforms were automatically identified using a nominal annual cloud and cloud shadow-free NDWI composite image and Google Earth Engine. Validation using Sentinel-2 Multispectral Imager (MSI) and Google Earth images demonstrated that the correct rate of offshore drilling rig detection in the Caspian Sea is 90.2%, the missing judgment rate is 5.3% and the wrong judgment rate is 4.5%, proving the performance of the proposed method. This method can be used to identify offshore drilling rigs within a large water surface area relatively quickly, which is of great significance for exploring the exploitation status of offshore oil and gas resources. It can also be extended to finer spatial resolution optical remote sensing images; thus small-size drilling rigs can be effectively detected.

Funder

National Key Research and Development Program of China

One Hundred Talents Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference54 articles.

1. Potential of Global Offshore Petroleum Resource Exploration and Utilization Prospect;Jiang;Nat. Gas. Geosci.,2010

2. Estimating offshore oil production using DMSP-OLS annual composites

3. Energy Outlook 2019 Edition https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2019.pdf

4. World Bank Database https://databank.worldbank.org/home.aspx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3