Assessing Forest-Change-Induced Carbon Storage Dynamics by Integrating GF-1 Image and Localized Allometric Growth Equations in Jiangning District, Nanjing, Eastern China (2017–2020)

Author:

Liu Jiawei1,Yang Boxiang1ORCID,Li Mingshi1ORCID,Xu Da23

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. Zhejiang Forest Resources Monitoring Centre, Hangzhou 310020, China

3. Zhejiang Forestry Survey Planning and Design Company Limited, Hangzhou 310020, China

Abstract

Forest and its dynamics are of great significance for accurately estimating regional carbon sequestration, emissions and carbon sink capacity. In this work, an efficient framework that integrates remote sensing, deep learning and statistical modeling was proposed to extract forest change information and then derive forest carbon storage dynamics during the period 2017 to 2020 in Jiangning District, Nanjing, Eastern China. Firstly, the panchromatic band and multi-spectral bands of GF-1 images were fused by using four different methods; Secondly, an improved Mask-RCNN integrated with Swin Transformer was devised to extract forest distribution information in 2020. Finally, by using the substitution strategy of space for time in the 2017 Forest Management and Planning Inventory (FMPI) data, local carbon density allometric growth equations were fitted by coniferous forest and broad-leaved forest types and compared, and the optimal fitting was accordingly determined, followed by the measurements of forest-change-induced carbon storage dynamics. The results indicated that the improved Mask-RCNN synergizing with the Swin Transformer gained an overall accuracy of 93.9% when mapping the local forest types. The carbon storage of forest standing woods was calculated at 1,449,400 tons in 2020, increased by 14.59% relative to that of 2017. This analysis provides a technical reference for monitoring forest change and lays a data foundation for local agencies to formulate forest management policies in the process of achieving dual-carbon goals.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3