Maria Basalts Chronology of the Chang’E-5 Sampling Site

Author:

Xu Zhen,Guo DijunORCID,Liu Jianzhong

Abstract

Chang’E-5 is the first lunar sample return mission of China. The spacecraft was landed in the northwest of the Procellarum KREEP Terrane (43.0576°N, 308.0839°E) on 1 December 2020 and returned 1731 g samples from a previously unvisited region. The landing area has been proposed as one of the youngest mare basalt units of the Moon and holds important information of lunar thermal evolution and chronology. However, the absolute model ages estimated in previous studies are quite different, ranging from 2.07 Ga to 1.21 Ga. Such significant difference may be caused by (1) different crater counting areas, (2) different crater diameter ranges, (3) effects of secondary craters, and (4) biases in crater identification. Moreover, the accurate landing site was unknown and the ages were estimated over the Eratosthenian-aged mare unit (Em4) instead. In light of the above unsatisfactory conditions, this study seeks to establish a standard crater size-frequency distribution of the CE-5 landing site. We derived the concentrations of FeO and TiO2 to map out the pure basaltic areas where external ejecta deposits are negligible and thus secondary craters are rare. Based on the geochemistry of basaltic ejecta excavated by fresh craters in the mare unit, the FeO concentration threshold for mapping pure basaltic areas is 17.2 wt.%. The morphologically flat subunits in the pure basaltic areas were selected for crater identification and age dating to exclude the contamination of external ejecta to the best as we could. In the Chang’E-5 sampling site subunit, we detected 313 craters with a diameter greater than 100 m and derived the absolute model age as 1.49−0.084+0.084 Ga. The craters identified in all pure basaltic subunits of Em4 gave the model age of 1.41−0.028+0.027 Ga. As least affected by secondary craters, the crater size-frequency distribution of the sample-collected pure basaltic subunit can provide important constraints for lunar cratering chronology function in combination with isotopic age of returned samples.

Funder

Chinese Academy of Sciences

National Science and Technology Infrastructure Program

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. Major lunar crustal terranes: Surface expressions and crust-mantle origins

2. Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032

3. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum

4. Ages and stratigraphy of lunar mare basalts: A synthesis;Hiesinger,2011

5. Crater size distributions and impact probabilities on earth from lunar, terrestrial planeta, and asteroid cratering data;Neukum,1994

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3