Landing control method of a lightweight four-legged landing and walking robot

Author:

Yin Ke,Qi Chenkun,Gao Yue,Sun Qiao,Gao Feng

Abstract

AbstractThe prober with an immovable lander and a movable rover is commonly used to explore the Moon’s surface. The rover can complete the detection on relatively flat terrain of the lunar surface well, but its detection efficiency on deep craters and mountains is relatively low due to the difficulties of reaching such places. A lightweight four-legged landing and walking robot called “FLLWR” is designed in this study. It can take off and land repeatedly between any two sites wherever on deep craters, mountains or other challenging landforms that are difficult to reach by direct ground movement. The robot integrates the functions of a lander and a rover, including folding, deploying, repetitive landing, and walking. A landing control method via compliance control is proposed to solve the critical problem of impact energy dissipation to realize buffer landing. Repetitive landing experiments on a five-degree-of-freedom lunar gravity testing platform are performed. Under the landing conditions with a vertical velocity of 2.1 m/s and a loading weight of 140 kg, the torque safety margin is 10.3% and 16.7%, and the height safety margin is 36.4% and 50.1% for the cases with or without an additional horizontal disturbance velocity of 0.4 m/s, respectively. The study provides a novel insight into the next-generation lunar exploration equipment.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3