Author:
Yin Ke,Qi Chenkun,Gao Yue,Sun Qiao,Gao Feng
Abstract
AbstractThe prober with an immovable lander and a movable rover is commonly used to explore the Moon’s surface. The rover can complete the detection on relatively flat terrain of the lunar surface well, but its detection efficiency on deep craters and mountains is relatively low due to the difficulties of reaching such places. A lightweight four-legged landing and walking robot called “FLLWR” is designed in this study. It can take off and land repeatedly between any two sites wherever on deep craters, mountains or other challenging landforms that are difficult to reach by direct ground movement. The robot integrates the functions of a lander and a rover, including folding, deploying, repetitive landing, and walking. A landing control method via compliance control is proposed to solve the critical problem of impact energy dissipation to realize buffer landing. Repetitive landing experiments on a five-degree-of-freedom lunar gravity testing platform are performed. Under the landing conditions with a vertical velocity of 2.1 m/s and a loading weight of 140 kg, the torque safety margin is 10.3% and 16.7%, and the height safety margin is 36.4% and 50.1% for the cases with or without an additional horizontal disturbance velocity of 0.4 m/s, respectively. The study provides a novel insight into the next-generation lunar exploration equipment.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献