Presenting a Semi-Automatic, Statistically-Based Approach to Assess the Sharpness Level of Optical Images from Natural Targets via the Edge Method. Case Study: The Landsat 8 OLI–L1T Data

Author:

Cenci LucaORCID,Pampanoni ValerioORCID,Laneve GiovanniORCID,Santella Carla,Boccia Valentina

Abstract

Developing reliable methodologies of data quality assessment is of paramount importance for maximizing the exploitation of Earth observation (EO) products. Among the different factors influencing EO optical image quality, sharpness has a relevant role. When implementing on-orbit approaches of sharpness assessment, such as the edge method, a crucial step that strongly affects the final results is the selection of suitable edges to use for the analysis. Within this context, this paper aims at proposing a semi-automatic, statistically-based edge method (SaSbEM) that exploits edges extracted from natural targets easily and largely available on Earth: agricultural fields. For each image that is analyzed, SaSbEM detects numerous suitable edges (e.g., dozens-hundreds) characterized by specific geometrical and statistical criteria. This guarantees the repeatability and reliability of the analysis. Then, it implements a standard edge method to assess the sharpness level of each edge. Finally, it performs a statistical analysis of the results to have a robust characterization of the image sharpness level and its uncertainty. The method was validated by using Landsat 8 L1T products. Results proved that: SaSbEM is capable of performing a reliable and repeatable sharpness assessment; Landsat 8 L1T data are characterized by very good sharpness performance.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3