Modelling Weather Precipitation Intensity on Surfaces in Motion with Application to Autonomous Vehicles

Author:

Carvalho Mateus1,Hangan Horia1

Affiliation:

1. Department of Mechanical Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

Abstract

With advances in the development of autonomous vehicles (AVs), more attention has been paid to the effects caused by adverse weather conditions. It is well known that the performance of self-driving vehicles is reduced when they are exposed to stressors that impair visibility or cause water or snow accumulation on sensor surfaces. This paper proposes a model to quantify weather precipitation, such as rain and snow, perceived by moving vehicles based on outdoor data. The modeling covers a wide range of parameters, such as varying the wind direction and realistic particle size distributions. The model allows the calculation of precipitation intensity on inclined surfaces of different orientations and on a circular driving path. The modeling results were partially validated against direct measurements carried out using a test vehicle. The model outputs showed a strong correlation with the experimental data for both rain and snow. Mitigation strategies for heavy precipitation on vehicles can be developed, and correlations between precipitation rate and accumulation level can be traced using the presented analytical model. A dimensional analysis of the problem highlighted the critical parameters that can help the design of future experiments. The obtained results highlight the importance of the angle of the sensing surface for the perceived precipitation level. The proposed model was used to analyze optimal orientations for minimization of the precipitation flux, which can help to determine the positioning of sensors on the surface of autonomous vehicles.

Funder

Canada Foundation for Innovation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3