An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions

Author:

Vargas JorgeORCID,Alsweiss SuleimanORCID,Toker Onur,Razdan Rahul,Santos Joshua

Abstract

Autonomous vehicles (AVs) rely on various types of sensor technologies to perceive the environment and to make logical decisions based on the gathered information similar to humans. Under ideal operating conditions, the perception systems (sensors onboard AVs) provide enough information to enable autonomous transportation and mobility. In practice, there are still several challenges that can impede the AV sensors’ operability and, in turn, degrade their performance under more realistic conditions that actually occur in the physical world. This paper specifically addresses the effects of different weather conditions (precipitation, fog, lightning, etc.) on the perception systems of AVs. In this work, the most common types of AV sensors and communication modules are included, namely: RADAR, LiDAR, ultrasonic, camera, and global navigation satellite system (GNSS). A comprehensive overview of their physical fundamentals, electromagnetic spectrum, and principle of operation is used to quantify the effects of various weather conditions on the performance of the selected AV sensors. This quantification will lead to several advantages in the simulation world by creating more realistic scenarios and by properly fusing responses from AV sensors in any object identification model used in AVs in the physical world. Moreover, it will assist in selecting the appropriate fading or attenuation models to be used in any X-in-the-loop (XIL, e.g., hardware-in-the-loop, software-in-the-loop, etc.) type of experiments to test and validate the manner AVs perceive the surrounding environment under certain conditions.

Funder

Middle Tennessee State University

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference62 articles.

1. SAE International https://www.sae.org

2. History of Autonomous Cars https://en.wikipedia.org/wiki/History_of_self-driving_cars

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3