An Improved Optimization Model to Predict the MOR of Glulam Prepared by UF-Oxidized Starch Adhesive: A Hybrid Artificial Neural Network-Modified Genetic Algorithm Optimization Approach

Author:

Nazerian MortezaORCID,Karimi Jalal,Torshizi Hossin Jalali,Papadopoulos Antonios N.ORCID,Hamedi Sepideh,Vatankhah Elham

Abstract

The purpose of the present article is to study the bending strength of glulam prepared by plane tree (Platanus Orientalis-L) wood layers adhered by UF resin with different formaldehyde to urea molar ratios containing the modified starch adhesive with different NaOCl concentrations. Artificial neural network (ANN) as a modern tool was used to predict this response, too. The multilayer perceptron (MLP) models were used to predict the modulus of rapture (MOR) and the statistics, including the determination coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) were used to validate the prediction. Combining the ANN and the genetic algorithm by using the multiple objective and nonlinear constraint functions, the optimum point was determined based on the experimental and estimated data, respectively. The characterization analysis, performed by FTIR and XRD, was used to describe the effect of the inputs on the output. The results indicated that the statistics obtained show excellent MOR predictions by the feed-forward neural network using Levenberg–Marquardt algorithms. The comparison of the optimal output of the actual values obtained by the genetic algorithm resulting from the multi-objective function and the optimal output of the values estimated by the nonlinear constraint function indicates a minimum difference between both functions.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3