Effect of Volume Fraction of Reinforcement on Microstructure and Mechanical Properties of In Situ (Ti, Nb)B/Ti2AlNb Composites with Tailored Three-Dimensional Network Architecture

Author:

Zhang Ningbo,Ju BoyuORCID,Deng Taiqing,Fu Sen,Duan Cungao,Song Yiwei,Jiang Yijun,Shen Qin,Yao Caogen,Liu Mingda,Wu Ping,Xiu Ziyang,Yang WenshuORCID

Abstract

The mechanical properties of (Ti, Nb)B/Ti2AlNb composites were expected to improve further by utilizing spark plasma sintering (SPS) and inducing the novel three-dimensional network architecture. In this study, (Ti, Nb)B/Ti2AlNb composites with the novel architecture were successfully fabricated by ball milling the LaB6 and Ti2AlNb mixed powders and subsequent SPS consolidation. The influence of the (Ti, Nb)B content on the microstructure and mechanical properties of the composites was revealed by using the scanning electron microscope (SEM), transmission electron microscopy (TEM) and electronic universal testing machine. The microstructural characterization demonstrated that the boride crystallized into a B27 structure and the α2-precipitated amount increased with the (Ti, Nb)B increasing. When the (Ti, Nb)B content reached 4.9 vol%, both the α2 and reinforcement exhibited a continuous distribution along the prior particle boundaries (PPBs). The tensile test displayed that the tensile strength of the composites presented an increasing trend with the increasing (Ti, Nb)B content followed by a decreasing trend. The composite with a 3.2 vol% reinforcement had the optimal mechanical properties; the yield strengths of the composite at 25 and 650 °C were 998.3 and 774.9 MPa, showing an 11.8% and 9.2% improvement when compared with the Ti2AlNb-based alloy. Overall, (Ti, Nb)B possessed an excellent strengthening effect and inhibited the strength weakening of the PPBs area at high temperatures; the reinforcement content mainly affected the mechanical properties of the (Ti, Nb)B/Ti2AlNb composites by altering the α2-precipitated amount and the morphology of (Ti, Nb)B in the PPBs area. Both the continuous precipitation of the brittle α2 phase and the agglomeration of the (Ti, Nb)B reinforcement dramatically deteriorated the mechanical properties.

Funder

National Natural Science Foundation of China

Excellent Youth Scholars project of Natural Science Foundation of Heilongjiang Province

Heilongjiang Touyan Team Program

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3