Study on the Preparation of Network Ti-N/Ti Composites by Nitridation of Ti Powders

Author:

Xiu Ziyang1,Ju Boyu1ORCID,Zhan Junhai2,Chen Weidi2,Yin Aiping2,Zhu Xiaolin2,Wang Pengjun3,Wu Ping45,Yang Wenshu1ORCID

Affiliation:

1. State Key Laboratory of Advanced Welding and Jointing, Harbin Institute of Technology, Harbin 150001, China

2. Shanghai Aerospace System Engineering Research Institute, Shanghai 201108, China

3. Xian Honor Device Co., Ltd., Xi’an 710000, China

4. Key Laboratory of Advanced Science and Technology on High Power Microwave, Xi’an 710024, China

5. Northwest Institute of Nuclear Technology, Xi’an 710024, China

Abstract

Composite structure design is an important way to improve reinforcement strengthening efficiency. The dispersion of the external reinforcement is often not uniform enough, however, and it is agglomerated in the matrix, which cannot uniformly and effectively bear the load. The interconnected reinforcement network prepared by the in-situ self-growth method is expected to obtain higher material properties. In this paper, the TiN shell was formed on the surface of Ti powder by the in-situ nitriding method, and then the network TiN/Ti composites were prepared by sintering. In the control group, TiN was dispersed by mechanical ball milling, and it was found that TiN powder was coated on the surface of Ti particles, and the sintered TiN/Ti composites formed a discontinuous structure with a great deal of TiN agglomeration. A uniform TiN nitride layer of 5~7 μm was formed on the surface of Ti powder by the in-situ nitriding method, and a connected TiN network was formed in the sintered Ti-N/Ti composites. The composites prepared by nitriding have higher compressive strength, hardness, and plasticity. The hardness of the Ti-N/Ti composite is 685.7 HV and the compressive strength is 1468.5 MPa. On this basis, the influence of the connected TiN structure on the material properties was analyzed, which provided theoretical guidance for the structural design of the network structure-reinforced titanium matrix composites.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Excellent Youth Scholars Project of Natural Science Foundation of Heilongjiang Province

Heilongjiang Touyan Team Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3